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A method that allows to solve in a semi-analytical manner the problem of conductive and radiative
transfer in a plate of glass is presented. The semi-transparent layer emits, absorbs and scatters radiation
(participating medium). This method stems from the principle of a Kernel substitution technique applied to
the radiative flux expression and initially introduced by Lick (1963) that allows to change the character of
the governing heat equation from the integro-differential form to a purely differential one. In the case of
limiting cases of purely scattering and purely absorbing media, the solution of the radiative transfer
equation is exact. In the general case, we make a two-flux approximation. In all cases, we assume a linear
transfer and use the Laplace transform. The advantage of the method is fast computational times for good
precision.

Transient Heat Transfers in a Semi-transparent Material (S.T.M)

The general transient heat transfer in a semi-transparent material (5.7./]) is obtained by
solving the combined conductive (Fourier's law) and radiative (R.T.E) equations that are
given by :
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Figure 1 : Radiative Heat Transfer for a Plane-Parallel Medium

The temperature is coupled with the intensity through the divergence of the radiative flux
that appears in the heat equation as a source term. The intensity is a function of the
temperature field through the emission term of the RT.E that corresponds to the
Blackbody's intensity which is a function of the local temperature of the material.



The second-left term of the R.T.E is the loss of the radiant energy due to the absorption and
scatteting of the incident radiation : B, =K +0,, K

, and O, are respectively the

monochromatic extinction, absorption and scattering coefficients. @, =0, /B, denotes the

monochromatic albedo and I‘:O(T ), the Planck's energy distribution. The right term of the
R T.E is the source function that represents the gain in radiant energy by emission and
incoming scattering. p, (A" — A) is the phase function.

Solution in the Case of a Grey Plane Parallel Medium

In this section, we assume the radiative properties of the material as being independent
of wavelength (hypothesis of a grey medium). This assumption is not necessary and the
calculation can also be conducted in the cases of a non-grey or grey-band models. It only
allows to obtain more simplified expressions (IV' —1I’). In the more general case, this
equation remains difficult to solve. Nevertheless, the RT.E is greatly simplified if the
one-dimensional geometry is considered.

One more assumption consists in admitting azimuthal symmetric radiation (intensity is
independent of the angle @ in the medium). This is valid for some particular radiative

boundary conditions. Due to the singularity of the intensity that appears in the R.T.E for
1 =0and to allow the writing of the boundary conditions in a convenient way, intensity is

separated into a forward component [ +(Z,,LL) for >0 and a backward component

I (z,u) for w<0.The RT.E is then split into two coupled integrodifferential equations
that have explicitly the same forms:
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The integrodifferential equations can be solved by introducing the radiative conditions of he
problem. In the case of opaque, diffusely emitting (€ independent of the angle) and
diffusely reflecting boundaries (p independent of the angle), the intensities of the surfaces

no longer depends on 6 and can be written under the following form:
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Solution of the Radiative Transfer Equation : " Equivalent Radiative Resistance "

First attempts to solve this combined equations consists in modeling the radiative
transfer by an equivalent radiative resistance. In the case of optically thin material, we can
make the assumption of the Local Thermodynamic Equilibrium (L. T.E), which yields to a
flux divergence equal to zero. In the case of a optically thick medium, the radiative transfer
can be viewed like a pure diffusion process (Rosseland's model). This notion has been then
extended to intermediate optical thickness by several authors.



In all theses cases, the radiative transfer is uncoupled with the temperature field within the
material but remains linked to the conductive flux through the boundaries conditions. A very
simple model can be purposed to determine the transient heat transfer in the S.T.M: the
conductive heat transfer is modelled through a quadrupole formulation' that allows to
linearly links by a transfer matrix the "inner" and "outer' Laplace temperatures and total fluxes

transforms:
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The radiative transfer is taken into account by a radiative resistance in parallel with the pure

conductive quadrupole. The more interesting resistance expression is given by the Po/#z-
Jugel's model® that is valid on a wide range of optical thickness values:
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This model tends to the Deissler’s model’ for low optical thicknesses and to the well-known
Rosseland’s model for large optical thicknesses ¥ —1).
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Figure 2 : Equivalent Radiative Resistance

In the particular case of a pure scattering material, the emission term disappears in the
R T.E. The radiative and conductive equations are naturally uncoupled and the model based
on the notion of a radiative resistance is exact. This explains the success of this notion in
insulating materials like foams.

The Semi-Tranparent Quadrupole

The general equation for the combined conductive and radiative non-steady heat
transfer is an integrodifferential equation that can be solved analytically by making the
assumption of a linearized radiative transfer (1+6,/T,)' =1+46,/T, (T, being the

reference temperature). The semi-transparent material is always considered in small
deviations from a reference state. In the case of a purely absorbing-emitting medium, the
intensity is anisotropic and the problem is difficult to solve because of the presence of

1
exponential integral functions E, (x):J.Oe*x/ “u"?du in the radiative flux expression.



Applying a Kernel substitution technique that consists in replacing exponential integrals that
appear in the radiative flux expression, we obtain a modified integral equation. Here, we

used the approximate kernel found by Lik" of the form aexp(—bz) for the correct kernel
EZ(Z), and also (a/b)exp(—bz) for the Kernel E, (z), with @ and b being equal to 3/4

and 3/2 respectively. By using the coefficients @ and b derived by Lick, we obtain
discrepancies less than 3% on the temperature field. The modified integral equation is given
in dimensionless form by:
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We have to notice that in the case of the two-flux approximation, the Kernel substitution
technique is not required because classical exponential expressions naturally appears in the
expression of the radiative flux. Then, it is possible to obtain from expression (7), a
differential equation in terms of the radiative flux’:
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Differentiating the energy equation twice, substituting the second-order derivative of the
radiative flux and expressing dg, /dz in term of the partial derivatives of 6 according to the
energy equation yields to:
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If we now introduce the Laplace temperature transform 2 (p)zj-:O(t)eXp(— pt)dt and

applying the integral transformation to the above equation leads to the following differential
equation:
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The solution of the preceding fourth-order ordinary equation gives the Laplace transform of
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the temperature 6 (z)= Zai exp(y,z) with: Vi2sa = i[(—b +/b* — 4ac) 2a] 2. (11)
i=l

The Laplace transform of the total flux ¢ (sum of the conductive and radiative fluxes) is
—do 1T,

iven by: ¢ =——+—27 . 12

givenby: ¢ =———+—7¢, (12)



The matrix coefficients 4, B, C and D are obtained by writing the relations between

6(0),6(), ¢(0) and ¢ (1):
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Two other relations between the ¢;'s can be obtained by requiring that the solution has to

satisfy the heat transfer equation (compatibility's equations):
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So, we have:
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That can be formally written as [ =NM"'O. The coefficients of the quadrupole are
obtained by extracting the two first columns and lines from the matrix NM ™.

Conclusions

The coupled conducto-radiative quadrupole we purposed in this paper allows to
solve the heat transfer within a Semi-Transparent Wall (M.S.T) in a very simple way. The
main interest of this method is that it is non-dependant of the boundaries conditions and it
can be applied without any major difficulties to any kind of imposed temperatures or fluxes
problems (heat pulse’, step of temperature, and so on ...). The steady-state solution can be

easily obtained by taking the following limit ling p9_ (p) This model can also be extended to
p—

systems in a periodic regime by setting p =i@®.
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