Convection laws for glass furnaces revisited
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We introduce a simple geometry to study natural convection in a two-dimensional box, closer to that of
glass furnaces than the usual differentially heated box. We show that, in both cases, temperature and
velocity fields scale with the Rayleigh number (or the Grashof number) based on the height of the box. The
model we suggest has qualitative features similar to those observed in direct numerical simulations of glass
furnaces.

Introduction

Convection is the most remarkable large scale phenomenon occurring in glass furnaces.
Its role is essential to insure proper melting and to achieve the required levels of quality. Its
intensity largely depends on the geometric configuration of the furnaces. Natural convection
has been intensively studied by physicists, theoretically as well as experimentally. Despite this
body of knowledge, glass makers hardly quote academic literature on that topic, the most
accessible reference being Leyens’ analysis' as reported in Trier’. In this paper, we first
summarize results on differentially heated long cavities and we discuss the consequences for
glass furnaces. We then present results on convection in a zenithally inhomogeneously
heated long cavity, a geometry closer to that of glass furnaces.

The differentially heated cavity

G. Leyens’ work to quantify the intensity of convection in a glass furnace relies on a
comparison with an academic convection problem, namely convection in a long adiabatic
cavity with differentially heated end walls. Despite numerous studies on this topic,
knowledge is far from complete, especially for convection at high Rayleigh number and high
Prandtl number. We first recall the main known results as summarized by B. Boehrer’. We
then describe how they may be recovered in the simplest case and compare them to glass
furnaces.

Various possible regimes

We consider a long cavity of aspect ratio 4= H /L (A <<1) with adiabatic upper and
lower walls, and with side walls kept at fixed temperatures 7 and 7, (Fig. 1a). The fluid
which fills the cavity has constant kinematic viscosity V and heat diffusivity k. Its density
p vates linearly with temperature, the thermal expansion coefficient being B. It is a
classical matter to show that this problem only depends on three nondimensional numbers:
the Rayleigh number Ra = gBATH’ /(vk), the Prandtl number Pr=v/k and the aspect
ratio 4. For glass, heat diffusivity is usually dominated by the radiative component within
the framework of the Rosseland approximation. Also, viscosity typically varies over two to
three orders of magnitude in the melting part of a furnace. However, the Prandtl number
remains high, of order 10° to 10°. Assuming typical values for glass and furnace
characteristics, the Rayleigh number is of order 10° to 107, and the aspect ratio is about
5-107°. B. Bochrer’ has summarized known features of convection in a long box, at high
Rayleigh number and high Prandtl number. Three different regimes exist : the conductive,
the transition and the convective regime, the boundaries of which he discusses. In the
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Figure 1. Model cavities for natural convection. a) Differentially heated cavity. b)
Zenithally heated cavity. Isotherms (dashed lines) and velocity profile (solid line) are
sketched in the conductive regime.

conductive regime, isotherms are essentially vertical and the temperature gradient is roughly
constant in the bulk of the cavity. In the convective regime, the center of the cavity is
essentially motionless, the whole transport taking place in two boundary layers at the top and
the bottom of the cavity ; consequently, the isotherms are mainly horizontal. In the
transition regime, the isotherms flatten out whereas the fluid moves in the whole cavity.

With phenomenological arguments relying on experimental results, Boehrer suggests that the

transition regime occurs when Ra.4’ is between 10> and 10*. Hence inasmuch as glass
furnaces may be compared to this ideal situation, the regimes of interest are the conductive
and the transition one. Thus results obtained in the conductive regime will be appropriate
for, or close to, glass furnaces.

Conductive regime

The structure of the velocity and temperature fields are the simplest in the conductive
regime. Since the temperature gradient is constant (of order AT /L), and the flow parallel
(except near the side walls), the pressure field is hydrostatic with a temperature dependent
density. The equation of motion in the bulk reduces to a force balance along the longitudinal
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direction : p 2= —&(H - Z)a_ , which is easily integrated. The maximum velocity reads :
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u=8-10"Ra(x/L)=8-10"Gr(v/L), where Gr is the Grashof number (Gr = Ra/Pr).
This simple analysis is confirmed by asymptotic analysis”.

Comparison with classical formulae
Trier, quoting Leyens, explains that the Rayleigh number, as well as the Grashof number can
be used as similarity parameters. However he does not precise how different quantities scale.

In addition, he suggests that the product H?.L should be used in the Rayleigh (or the
Grashof) number. According to our analysis, this seems inappropriate.

The zenithally heated cavity

Since the differentially heated long cavity is still far from resembling a glass furnace, we
suggest a similar model, simple enough for calculation, but somewhat closer to reality. We
consider a closed box, with adiabatic side walls and bottom, with a half-cosine imposed

temperature profile along the top side (Fig. 1b).

Temperature field without flow
In the conductive regime, since the Prandtl number is high, the velocity field adjusts to the
temperature field. As a first approximation, the latter can be evaluated with the static field,
which is a solution of the Laplace equation : VT =0, in the bulk, with the appropriate
boundary conditions ( dT/dn=0 along the adiabatic sides, T =f—(AT /2)cos(mx/ L)
along the top side). This can be calculated by Fourier transform and separation of variables.

2 cosh 74
where the horizontal and vertical coordinates x and y have been normalized by the height
H of the box (x=x/H , y=y/H). The structure of the isotherms is richer in this case

than in the differentially heated cavity : they symmetrically fan out from the center of the
cavity (Fig. 1b).
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One finds for the dimensionless temperature 6 : 6,(x, y)=—l:1—MCOSﬂ'Ax},

Structure of the flow

As expected, the perturbation induced by the velocity field to the temperature field is small
at low Rayleigh number. Asymptotic analysis can be carried out and leads to the following

result at the lowest order in Ra
2.2

2, 2 i 2. 48 A5 A4 A3
O(fc,f/)z%(l—cosnAfc)—Aﬂ (J?z—l)cosnAfc+RaAf [Sm ”Ax(y——y—ﬂ——i)}

4 24 5 2 3 30

At zeroth order in Ra, the stream function reads : ¥, (X, ) = % $7(9—1)* sin 4% . These

formulae indicate some simple results. First of all, comparison between asymptotic formulae
show that the scaling is similar to that seen in the differentially heated cavity. In particular,
the maximum velocity also scales like Ra(k/L). One also sees that the relevant parameter

to classify the different regimes is also Ra.A”. Finally, with increasing Ra , because of the
interplay between velocity and temperature (in other words, because of convection),
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Figure 2. Numerical calculation of zenithally heated cavity. (Ra=10°, A=0.1, Pr=10%).
a) Isotherms. b) Streamlines.

the temperature field looses its left/right symmetry. Isotherms tend to be vertical in the cold
place (linear thermal gradient) and to be horizontal in the hot place (stably stratified). This
tendency is commonly observed in glass furnaces simulations’. As expected, these formulae
loose their validity when the Rayleigh number becomes too large, but the main features
remain (Fig. 2).

Conclusion

Comparison of two simple models of natural convection in a long cavity shows that the
relevant scaling parameter is the Rayleigh (or the Grashof) number based on the height of

the cavity only. In particular the maximum bulk velocity is proportional to H*/L. A
modified version of the usual differentially heated cavity, namely the inhomogeneously
zenithally heated cavity shows qualitative features similar to those observed in direct
simulations of glass furnaces. It would be interesting to test the impact of variations of
physical properties of the fluid in this configuration.

We thank R. Germar for numerous discussions.
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