Nuclear Magnetic Resonance (NMR) Investigation of Glass Forming Reactions in the Binary Na₂O-SiO₂ system

A.R. Jones, R. Winter and G. N. Greaves Department of Physics, University of Wales, Aberystnyth, Penglais, Aberystnyth, UK

I. H. Smith
Glass Melting Technology, Pilkington Technical Centre, Lathom, UK

The glass forming reactions of a model SiO₂-Na₂CO₃ raw glass batch has been studied by Magic Angle Spinning (MAS) NMR spectroscopy of ²⁹Si and ²³Na. The study is concerned with the mechanism of the reaction between quartz and sodium carbonate at 700°C to 1300°C. The batch reaction process observed comprises of three main stages. The initial stage involves a solid-state reaction between quartz and Na₂CO₃ grains that are in direct contact. Precipitation of an intermediate crystalline Na₂O•SiO₂ phase at the reaction interface is observed. The second stage commences with the melting of Na₂CO₃ and the wetting of the partially reacted quartz grains. The reaction continues until the quartz and Na₂CO₃ are fully reacted and only crystalline Na₂O•SiO₂ is present. The final stage is the melting of Na₂O•SiO₂ observed at 1090°C to produce a melt of the same nominal composition.

Introduction

MAS NMR spectroscopy has been used to follow the batch melting of a 1SiO₂-1Na₂CO₃ molar ratio batch. MAS NMR has been extensively used to study both silicate glass and crystalline minerals^{1,2,3,4,5}. The equal sensitivity to both glass and crystalline materials makes MAS NMR ideally suited to study partially melted glass batches². ²⁹Si MAS NMR is sensitive to changes in the polymerisation of the material. The corner-sharing SiO₄ tetrahedra of quartz are designated Q⁴, where Qⁿ refers to the SiO₄ tetrahedron with n bridging oxygens (BO). The reaction of alkali carbonates with quartz produces an interface where the SiO₄ network has been depolymerised, forming non-bridging oxygens (NBO) and therefore a range of Qⁿ species. Q² and Q³ species would be equivalent to a glass (or crystal) of composition Na₂O•SiO₂ and Na₂O•2SiO₂ respectively.

Experimental

The model batch with 50mol% SiO₂ and 50mol% Na₂CO₃ was prepared from high purity quartz and 99% ¹³C-enriched Na₂CO₃ (Euriso-Top, France), with 0.2wt% Fe₂O₃ added to enhance spin-lattice relaxation. Samples of 200mg of batch were heated in a Pt crucible at a rate of 10°C/min and air quenched from 700, 850, 950, 1090 and 1300°C. MAS NMR experiments were performed on the samples on a Bruker Avance DSX 400 spectrometer with a principal field strength of 9.4T. Spectra were acquired with a 4mm MAS probe spinning at 5kHz and 15kHz for ²⁹Si and ²³Na respectively. The chemical shifts are referenced to TMS for ²⁹Si and aqueous NaCl for ²³Na.

Results

Silicon-29

The ²⁹Si MAS NMR spectra for the series of partially melted samples heated to specified temperatures and quenched are show in Figure 1. The spectra clearly show that an increase in heat treatment promotes the formation of a second narrow peak at ~ -86ppm. This peak is due to crystalline Q² species (Na₂O•SiO₂). The spectrum of the 850°C sample with improved S/N of the intermediate phases (at the expense of the quartz peak) is shown in fig.2. The broad resonance peak centred at ~ -98ppm is attributable to glassy Q³ (Na₂O•2SiO₂) phase. The formation of an increasing amount of glassy phase is observed as the sample is heated past the melting temperature of Na₂O•SiO₂. The sample heated to 1300°C illustrates the dramatic broadening of the resonance line due to the greater range of bond angles and bond lengths in the glassy Na₂O•SiO₂ structure compared to the crystalline equivalent. Some crystalline Na₂O•SiO₂ remains at 1300°C and is clearly seen as a narrow peak on top of the broad resonance peak.

Sodium-23

Some of the ²³Na MAS NMR spectra are shown in Fig. 3. The ²³Na spectrum of the raw glass batch i.e. Na₂CO₃ is characterised by two peaks in the range –23 to –60ppm. Increased heat treatment promotes the growth of a peak at ~30ppm due to Na₂O•SiO₂ and the demise of the Na₂CO₃ peaks. The spectra of the sample heated to 950°C is characterised by only one peak due to Na₂O•SiO₂. A broad peak reappears in the range –23 to –50ppm in the last spectra of the series. This broadness is due to the glassy phase that was evident in the ²⁹Si spectra. Such broadness is also seen in the spectra of the 850°C sample when the difference spectrum is obtained (not shown) by subtracting the ²³Na spectrum of the raw batch.

Disscussion

The first step of the reaction between quartz and Na₂CO₃ taking place at 700°C is the formation of crystalline Na₂O•SiO₂ by solid-state reaction. This is shown both in the ²⁹Si spectrum with the line appearing at ~-86ppm and by the ²³Na spectrum with the line appearing at ~30ppm. The formation of Na₂O•SiO₂ continues as a function of heating at the expense of the quartz and Na₂CO₃. The first occurrence of a glass phase is observed at 850°C, therefore indicating the formation of a silicate melt. This corresponds to the broad peak centred at ~ -98ppm and corresponds to the chemical composition of Na₂O•2SiO₂. The formation of this glass phase could either be due to the melting of an equivalent crystalline phase or by the further reaction of the Na₂O•SiO₂ with quartz. Crystalline Na₂O•2SiO₂ melts at ~874°C, therefore it is thermodynamically possible for this compound to precipitate following the reaction of quartz and Na₂CO₃ between 700°C and 850°C. This would then melt when approaching its actual melting point producing the glass phase observed after quenching. Alternatively a reaction at the interface of the Na₂O•SiO₂ and quartz could also lead to the formation of Na₂O•2SiO₂. Since no samples have yet been heated to temperatures in the region 700°C to 850°C it is not possible to confirm either mechanism. In-situ X-ray diffraction studies are presently being carried out which can confirm the reaction mechanism.

By 950°C both quartz and Na_2CO_3 have fully reacted since the signal at \sim -116ppm has disappeared from the ²⁹Si spectra and no Na_2CO_3 contribution is present in the ²³Na spectra.

The sample is composed only of crystalline $Na_2O \cdot SiO_2$ at 950°C. The silicate melt $(Na_2O \cdot 2SiO_2)$ observed at 850°C is no longer present. This indicates a reaction of $Na_2O \cdot 2SiO_2$ with Na_2CO_3 to form crystalline $Na_2O \cdot SiO_2$, which would be the most thermodynamically stable product at this temperature.

A significant change in the ²⁹Si spectra appears above the melting point of Na₂O•SiO₂. Broad resonance peaks due to glass phases are observed corresponding to the melting of the crystalline Na₂O•SiO₂ structure. The broadness of the peak indicates the disordered environment of the Si atoms in the newly formed melt.

Conclusion

²⁹Si and ²³Na MAS NMR has been used to study the reactions of a SiO₂-Na₂O model glass batch. It has been clearly shown that quantitative information concerning the formation and evolution of intermediate reaction products can be acquired. Solid, crystalline Na₂O•SiO₂ is the primary reaction product of the quartz and Na₂CO₃ reaction between 700°C and 950°C. Evidence for the formation of a Na₂O•2SiO₂ melt at 850°C is obtained from the broad resonance peak at ∼-98ppm in the ²⁹Si spectra. At temperatures greater than 1090°C the melting of crystalline Na₂O•SiO₂ is observed in the ²⁹Si spectra with the dramatic broadening of the resonance line.

Figure 1. ²⁹Si MAS NMR spectra of a SiO₂-Na₂CO₃ glass batch heated at 10°C/min to the specified temperatures (not to scale)

Figure 2. Deconvolved ²⁹Si MAS NMR spectrum of the SiO₂-Na₂CO₃ batch heated to 850°C.

Figure 3. ²³Na MAS NMR spectra of a SiO₂-Na₂CO₃ glass batch heated at 10°C/min to the specified temperatures (not to scale)

¹ Jones, A. R, Winter, R, Greaves, G. N. and Smith, I. H., J. Non-Cryst. Solids **293-295**, p. 87 (2001).

² Jones, A. R., Winter, R, Greaves, G. N. and Smith, I. H., Glass Technology. (In press)

³ Meneau, F, Greaves, G. N., Winter, R and Vallis, Y, J. Non-Cryst. Solids **293-295**, p. 693 (2001).

⁴ Mortuza, M. G., Dupree, R and Holland, D, J. Material Science 33, p. 3737 (1998).

⁵ Xue, X and Stebbins, J. F., Physics and Chemistry Of Minerals **20**, p. 297 (1993).

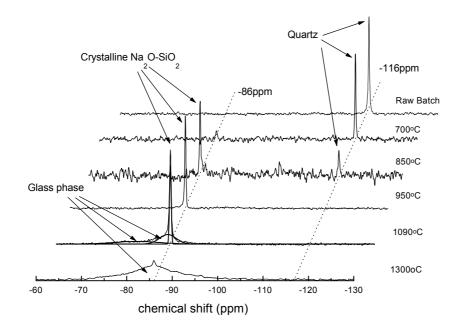


Figure 1.

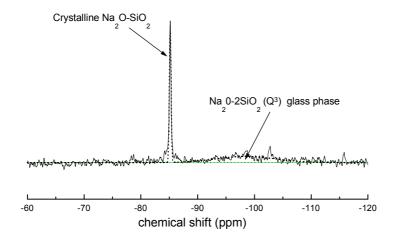


Figure 2.

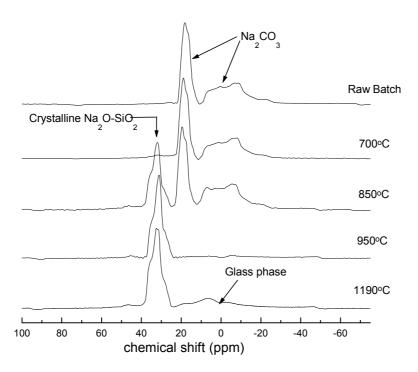


Figure 3.