Heat transfer in fibrous insulators.
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We are going to present a study about the modeling and the thermal characterization of semi-transparent
media made of silica fibers. We shall be particularly interested in the radiatif heat transfer and in the interactions
between the radiation and the material. The transmission and the reflection of the radiation are measured on
commercial devices working with specific devices developed by the LEMTA. The aim of this studies is to
improve the performances of building heat insulators and of materials used under strong thermic gradients.
Typical example are resistance to fire, spatial engines materials behaviour. Transient nature of combined heat
transfer by radiation and conduction in a fibrous medium is studied with temperature or flux boundary
conditions. The monochromatic scattering and absorption coefficients as well as the phase function are
calculated using the Mie theory. The equations modelling heat transfers are solved using a unidimensional model
with numerical methods based on a discretization of the medium. Simulation results are presented for an
insulator layer made of silica fibers. The study presented here concerns the characterization of fibrous
insulations, but theory and experimental apparatus can be used for all the semi-transparent media.

Analysis
Introduction

The improvement of the thermal properties of a material needs a good understanding of the
physical phenomena responsible of heat transfer. The studied materials are made of two phases:
silica fibers and air (situated between fibers).

At room temperature, we can neglect the convection inside the medium: we shall have to
consider only the transfers of heat by conduction and radiation. Heat conduction of insulators made
the object of numerous studies at Saint-Gobain research center.

Conduction in fibrous media is due to conduction in air and conduction throught the fibers in
contact. We are going to present here the methods used for the study of the radiative transfer. The
size of particles constituting the medium is almost the same as radiation wavelength. So, the classic
geometric optic laws are not sufficient to study the radiation-fiber interaction. The first step of our
research is to solve the Maxwell equations.

We assume that a fiber can be represented by an infinitely long cylinder and we determine its
radiative properties using the Mie theory "*°. These calculations are true if we set that fibers are
sufficiently spaced from each others.

The equations of the radiative transfer and of energy conservation are solved with a method
which allows the calculation of temperature and intensity fields in the medium. Radiative and
conductive heat fluxes will be presented further.

In steady-state regime, our model has been validated by results obtained by Saint-Gobain,
for several types of materials, with a hot guarded plate apparatus. The material is isolated from the
outside and placed between two plates with fixed temperatures. According to the insulating quality
of the material, it is necessary to bring more or less of heat (by Joule effect) to keep the hot face
temperature constant. The amount of heat provided characterizes the insulating performance of the
tested material.

The interest of this research is the optimization of the thermal properties of the fibrous
medium from the knowledge of easily measurable properties.



Transient combined radiation and conduction heat transfer

The radiation—conduction interaction inside a semi—transparent medium is completely
described by two equations. One express the radiative transfer and the other the total energy
conservation. The fibrous media studied are non—grey, anisotropically absorbing, emitting and
scattering. The radiative properties of the medium are characterized by the monochromatic

absorption, scattering coefficients K,, 0, and by the monochromatic phase function @, , that

we determine from the Mie theory "*’. The thermophysical material properties (specific heat
capacity and thermal conductivity) are temperature dependent. The medium is one dimensional,
axisymetric with thickness E.

A. The Radiative Transfer Equation (RTE)

In such medium and for the applications we consider, the monochromatic radiation
intensity I, (x,M,t) is governed by the RTE *, which is written for the wavelength A, the

position x; in the direction {4 and at time 7 as
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Iy, (T(x,1)) is the intensity of the black body at the temperature of the considered point.
Gsx (W and ¥, (L) are the effective section in the direction W refer respectively to the

absorption and scattering.

The second member of this RTE involves three terms linked to the phenomena taken into
account for the diminution and the intensification of the intensity:

- The intensity can be decreased by extinction: scattering and absorption;
- The internal emission increases the intensity (it depends on the temperature field);
- By scattering, the radiative flux in the initial direction |’ can increase the flux in the direction

B. The energy equation

The transient temperature response in the medium is obtained solving the nonlinear energy
equation which is written at the position x and at time 7 according to

oT P oT ~
pe, 5 (0 =2 (KT (00) Z-(x.0) = 5, (00) )



In our case, the medium thermal conductivity k(7)) is described by Langlais and Klarsfeld semi—

empirical relation developed for insulators made of silica fibers. It is based on experimental data
obtained from a guarded hot plates (apparatus at the Saint Gobain Research Center) >

k(T)=0.2572 T** + 0.0527 p**' (1+0.0013 T) ©)

The equation (4) is coupled to the radiative transfer through the radiative source term

S (n) = —%(x,t) ©

where Q, is given by the relation (3). The conductive heat flux is defined by
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The total heat flux is given by the sum of radiative and conductive heat fluxes

Qt = Qr + Qc (8>

Under steady—state condition, the nonlinear energy equation (4) becomes
22 (5 =0 ©)
dx

Determination of the optical index of the silica

The expression of the various coefficients occurring in the equation of the radiative transfer
arises from the theory on the radiation - fiber interaction. So one needs the optical properties of
the bulk material.

These properties are defined by the real part n, and imaginary part k, of the complex optical
index given by:

n, =n, —ik, (10

n, is called index of refraction and k, characterises the absorption within our media. The
index n, and k, were determinated from reflexion spectrum measurements using of Kramers-
Kronig transformation. Transmission measurements are coupled with this method when the
index k, becomes very small with respect to the index n,.

These measures are achieved at the LEMTA in a wide range of wavelengths: from the
ultraviolet to far infrared. The numerical results obtained by this method allow us to represent
the variations of the indications n, and k, according to the wavelength.

We observe in the figure 1 that the optical properties of the silica strongly depend on the
wavelength. So the approximation of the grey material, i.e. a material the optical properties of
which are independent of the wavelength, would be completely unjustified in this case. Moreover,
analysis of the figure 1 shows the presence of two particular points.



They are located at wavelengths A,=7.3um and A,=18.9um. For these two wavelengths, the
medium has the same refractive index n, as air, and the index k, is small, i.e., the absorption is
weak. The medium made of fibers and air behaves like a no scattering and no absorbing material:

it is the CHRISTIANSEN effect. The presence of these two CHRISTIANSEN filters must thus
cause a decrease of the extinction of the radiation as we will show further.

The figure 1 shows also the presence of three absorption peaks, for the wavelengths 9.17um,
12.5um and 22pum, which can be related to movements of active ions by infrared illumination of
the same frequency.

Radiative properties of the medium

Once the bulk material optical properties has been determined, one have to obtain the
radiative properties of the fibrous medium that is an inhomogeneous medium made of similar
"particles". In the independent diffusion approach, the scattering by the medium is equal to the
sum of scattering by each particle and then the radiative properties of the medium ie. the
effective sections K, 0, and the phase function ®, (LW'— W) are obtained by an average of single

particle properties along the size distribution and orientation of the particles in the medium.

For a very few simple cases (sphere, ellipsoid and cylinder), the scattering by the particles can
be obtained by the Mie approach which leads to nearly analytical results which involve series of
functions such as Bessel functions or Ricati-Bessel functions ‘. In other case, one has to use
numerical methods such as the use of the Green function and the Dyson equation ', the
development of the field on a multipole basis * or the use of the finite difference time domain
method which is based on a direct resolution of Maxwell equations by using finite differences in
the time domain °. The most important advantage of this last method is that we can obtain results
in a wide range of wavelengths with no more than a Fourier transform of the temporal results
that are obtained. It is then possible to gain a large amount of calculation time against the other
methods which are monochromatic ones.

Here the silica fibers can be considered as infinitly long cylinders and the interaction with the
radiation is known. We present in figure 2 variations of K, O, versus the wavelength for a

medium made of silica fibers, with a 4um diameter, randomly oriented in planes parallel to the
sample edges.

In some cases, the medium is so much complex that a direct determination of the radiative
properties of the medium would be a herculean task. Then it would be easyier to obtain these
radiative properties from experimental measures such as the bidirectional reflection or
transmission functions (BRDF or BTDF), proceeding in this way by an inverse method [these
arnaud ou articles acceptés|. For doing this, one has to obtain the effective section O, et G, (or in
an equivalent way the the optical thickness and the albedo) and the parameters of a simplified
phase function model " that lead, once used in the radiative transfer equation, to a minimal
departure with experimental measures, that leads to an optimization problem.

Application to fibrous media
A) The boundary conditions

We have studied two cases corresponding to temperature and flux boundary conditions. For
the first case, the temperatures at the medium boundaries are assumed to be known,
corresponding to a system with guarded hot plates. The temperature of the front face is raised
abruptly following a specific relation. The thermal boundary conditions are the following : the



boundary surfaces at x =0 and x = E are both black surfaces kept at temperatures f(¢) and T}
respectively

T(0,t)=f(t) and T(E,t)=T, for t>0 (11)

where f is a given function and f(t) = T,. T(0,7) is the hot temperature, which increases very

quickly versus time and reaches the constant value 7. T(E,¢) is the cold temperature which
remains constant with time. An electric resistance makes it possible to keep a high temperature
1, at the front face of the medium studied and a low temperature 7, at the other face. The

contribution by Joule effect makes it possible to quantify the insulating character of the
conductor. The radiative boundary conditions * are for ¢ >0

LO.u=1,,(f()) for 0<pu<I .
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For the second case (flux boundary conditions), the two faces x=0 and x=F are in
contact with ambient temperatures 7., and T, respectively and the superficial exchanges

between wall and ambient are characterised by convectif exchange coefficients A, and h,.

Outside of two boundaries, we set two radiation sources of different intensity respectively, which
vary versus time and defined by :

- L(u,t) with 0<u <1 and ¢ >0 for the front face (i.e.in x=0);
- L(wt) with =1<u <0 and ¢>0 for the back face (i.e. in x=F).

We studied insulating materials made of glass wool, composed of silica fibers. These fibers
are randomly oriented in planes parallel to the boundaries of the medium. We consider the
surface as being practically transparent, knowing that the density of fibers is low in the front and
back plane. Thus, the probability for an incidental ray of meeting a fiber in the interface plane is
negligible compared to make one's way through the air. In this case, the radiative boundary
conditions are given by :

I, (0,u,t) = I} (1,t) for O<p<1, t>0

13)
I, (E,u,t) = I, (u,t) for =1<u<0, t>0
and the thermal boundary conditions by :
. oT
inx=0, —k(T)a— + h(T)(T-T,,)=0
. (14)

in x=E , k(T)%—T + h(T)(T~T.,) = 0
X

The convective exchange coefficients expressions /4, and 4, are determined from the

Nusselt, Rayleigh, Prandtl and Grashof numbers . For the two cases corresponding to the
temperature and flux boundary conditions, the medium layer is initially at uniform temperature :

T(x,00=T, forall 0Sx<E (15)



B) Numerical solution of the coupled system of equations

The above equations define a strongly coupled system of partial and integro differential
equations where the unknowns are the monochromatic radiation intensity and the temperature
field. There is no known analytical solution to these equations. Then, the solution is obtained
numerically using a discretization of the medium.

The RTE is solved using the method described in """, This method use a multi—flux model.
An angular discretization technique (Discrete Ordinates approximation) is applied in order to
express the RTE in an inhomogeneous system of linear differential equations associated with
Dirichlet boundary conditions. This system is solved by a direct method (matrix exponential
method), after diagonalizing the medium characteristic matrix, which made it possible to
circumvent the numerical instability problem. This method is efficient in terms of computational
times and the solution is analytical in space.

The energy equation is solved in space, by the finite element method P? using a non-
uniform mesh. The resulting differential system in time is integrated using the implicit Runge—
Kutta method adapted to stiff equations.

C) Simulation results

We studied a material composed of silica fibers with a diameter of 7 microns randomly
oriented in planes parallel to the boundaries. It is a material close to those used in heat insulation.

The thickness E, the density p and the specific heat capacity ¢, of the fibrous medium are

equal to E=10cm, p=20kg/m’ and ¢, =670 J/(kgK), respectively. For the numerical
application, 12 discrete polar directions and 211 wavelengths significant for the medium and
varying from 2.5 to 25 um are used. For the two problems; corresponding to the temperature
and flux boundary conditions, we used a non—uniform spatial mesh and refined the zones which
have strong temperature gradients. We used a very small time step (At =0,55s) for stability and

accuracy.

For the first problem corresponding to the temperatures imposed on the boundaries, we
calculated the temperature field and the heat fluxes in the medium according to time when

T, =400K, 7, =300 K and the temperature imposed f* follows the law :

(T, -T,)t+T, 0<1<ls
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Figures 3, 4, 5 and 6 show the evolution of temperature and fluxes according to time and
position in the medium. We point out that initially the temperature is constant and equal to T}

throughout the medium. At # =1s, the imposed temperatures are equal to 7, at x =0 and T at

x=FE . For low values of # the material is at a temperature much lower than the black body
located in x =0 and the temperature gradient is very significant : radiative and conductive fluxes
take high values. The radiation and conduction coupling leads to the existence of a maximum for
radiative flux : at this point, the radiative energy source term is null. When the steady—state is
reached (1 =1250s), the total heat flux becomes constant and equal to 47.8 W/m?® a numerical
value that we found from the previous developed steady—state model '*. We also find the same
values for the temperature field, the radiative and conductive fluxes. This validates the numerical
method used to solve the coupled system of equations, in transient state.



For the simulation of the second problem corresponding to the flux boundary conditions,
the medium is lightened by a black body, rising very quickly (1 s) from a temperature of 300 K to
a temperature of 600 K on the front face (in x =0) and remaining at a temperature of 300 K on
the back face (in x = E'). These two temperatures are then kept constant versus time. Thus, we
can consider the axial symmetry in our model, since the radiative boundary conditions respect
this symmetry. We suppose that the ambient temperature of the air on side of the front face of
the medium is heated and follows the following linear evolution :

(150-——+300) K when 0<7<120s
NS 120

450K when #2>120s

We assume that the ambient temperature of the air on side of the back face of the medium
remains constant versus time and is equal to 7, () =300 K. On the figures 7, 8, 9 and 10, we
represented the evolution of the temperature field and fluxes versus time and according to the
position in the medium. On these four figures, the curves at t; =1500s are related to the

steady-state behaviour. The temperature reach a maximum in the medium : it is the loss by
convection on the front face which is responsible. In particular, that leads to a conductive flux
with negative value near to the front face. The peak of radiative flux is due to the fact that the
incidental flux increases very quickly : the radiation is propagated in the medium at a speed close
to that of the light in the vacuum. The elevation of temperature cannot be done at the same
speed, therefore the conductive flux does not vary in the same way. The fast temperature
variation on the front face leads to a conductive flux which vary also strongly. During first
quarter of time necessary to reach the steady—state, the temperature field is practically linear.
Then, the convergence towards the steady—state is much slower. When the system reaches the
steady—state, the total heat flux becomes constant and equal to approximately 205 W/m?®, with a
relative error between the abscissas very weak (lower than 0,6 % in our case).

In addition, we can say that the computing times for the first and the second programs are
54 h 57 min 40 s and 82 h 04 min 10 s respectively, on a Pentium II with the convergence

criterion € =107 relating to the relative variation of the temperature versus time. These two
calculating times may seem to be long but they explain themselves by the complexity of the
models. Moreover, with these application examples, the algorithms proved to be robust and
stable.

Conclusion

The heat transfer by radiation and conduction in a fibrous media is studied with temperature
or flux boundary conditions. The studied media are non-grey, anisotropically absorbing, emitting
and scattering. The Mie theory is used to determine the effective section and the phase function
of scattering. The thermal conductivity is temperature dependent. The RTE and energy equation
are solved using a multi-flux model with a finite element method P’ We calculated the heat
transfer and the evolution of the temperature versus time in the medium. Our studies made
possible the knowledge of the thermal behaviour of fibrous insulants. Moreover, we can
determined accurately the role of several parameters such as : chemical composition, fiber
diameter and fiber distribution inside the medium. The further development of this study will be
related the validation of the model : the medium will be under strong heat fluxes on the front
face.
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Figure 1. Variations of n, and k, of the silica.
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Figure 3. Temperature versus time and

according to the position in the medium.

200 '
— 1500
<€ BN
5160 1000 | |
x
é 120 0s 500
®
e
o 80 % 0.5 1
RN
g
=}
T 40§
o 12508
3 ¥
0% 1 2 4 5 6 7 8 9 10

Position (cm)

Figure 5. Conductive heat flux versus time

and according to the position in the medium.
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Figure 8. Total radiative heat flux versus time

and according to the position in the medium.
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Figure 9. Conductive heat flux versus time

and according to the position in the medium.
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Figure 10. Total heat flux versus time and
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