Glass Properties, Calculated and Observed, in the Na₂O-B₂O₃-GeO₂ (SiO₂) System based on the Sub-system Concept

<u>Rikuo Ota</u>, Takashi Wakasugi and Katsuhisa Tanaka Dept. of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

1. Introduction

Computation of glass properties of multi-component system from its chemical composition is particularly difficult and offers quite an interesting problem at the same time. Especially it is true in cases where constituent atoms, such as boron B, germanium Ge and aluminum Al, would change their coordination number with chemical composition of glass including alkali metal oxides or alkali earth metal oxides. We have proposed a method to calculate glass properties based on the sub-system concept ¹⁻³, wherein change of coordination state is taken into consideration.

2. Calculation of glass properties by the sub-system concept

According to the sub-system concept a multi-component system, Na₂O-B₂O₃-GeO₂ for example, is supposed to consist of some mixtures of binary systems: Na₂O-B₂O₃ and Na₂O-GeO₂ (sub-systems). The essential presumption made in this concept states that in the multicomponent system sub-systems are thermodynamically equilibrated. The activity of an component, Na₂O for instance in this system, shared among the sub-systems must be equal. The activity of Na₂O itself would vary with composition. To determine the concentration of the Na₂O component in each sub-system, value of activity coefficient γ must be considered. The absolute values of γ are not necessary. Instead relative ratio γ_1/γ_2 is essential, where 1 and 2 denote the sub-system; Na₂O-B₂O₃ and Na₂O-GeO₂, respectively. The activity coefficient ratio was inferred from the Raman spectra measured in the Na₂O-B₂O₃-GeO₂ system. Partial fraction of B₂O₃ in this system was substituted for GeO₂. The change of Raman spectra with the substitution showed that 770cm⁻¹ peak allocated to four-fold coordinated boron group BO₄Na increased with B₂O₃ -> GeO₂ substitution, meanwhile 803cm⁻¹ peak allocated to three-fold coordinated BO₃ group in the boroxol ring decreased. The relative change in the peak intensity was interpreted as implying affinity between Na₂O and B₂O₃ much stronger than between Na₂O and GeO₂. Therefore it might be speculated that γ_1 should be smaller than γ_2 . The relative ratio γ_2/γ_1 was set tentatively at 2. Another clue to evaluate the relative value of the activity coefficient is provided from the electromotive measurement in the molten salts of binary systems including Na₂O-B₂O₃, Na₂O-GeO₂ and Na₂O-SiO₂ as a function of Na₂O concentration. Na₂O activity $\log a^*(\text{Na}_2\text{O}) = -\log \text{O}$ in the $\text{Na}_2\text{O-SiO}_2$ system lies on the same level of the $\text{Na}_2\text{O-GeO}_2$ system and at much higher level compared with the Na₂O-B₂O₃ system. It is apparent from this measurement that γ_2/γ_1 stays at somewhat constant value in the range 1.5 to 2.5. It may be reasonable to assume a constant value 2 for γ_2/γ_1 as a first approximation irrespective Na₂O concentration. Suppose the Na₂O-B₂O₃-GeO₂ system of following chemical composition. $sNa_2O+m_1B_2O_3+m_2GeO_2$ is decomposed into two sub-systems: $Na_2O-B_2O_3$ and Na₂O-GeO₂ of certain Na₂O concentrations, s₁ and s₂, as given below. Then

 $sNa_2O+m_1B_2O_3+m_2GeO_2=(s_1Na_2O+m_1B_2O_3)+(s_2Na_2O+m_2GeO_2)$ (1). Since activity a^* is a product of activity coefficient γ and its concentration $s_1/(s_1+m_1)$ or $s_2/(s_2+m_2)$, $a^*_1=\gamma_1s_1/(s_1+m_1)$ (2) and $a^*_2=\gamma_2s_2/(s_2+m_2)$ (3). At equilibrium $a_1^*=a_2^*$ (4). And $s_1+s_2=s$ (5), $s+m_1+m_2=1$ (6). From equations (1) through (6) one can obtain the values of s_1 and s_2 for a given set of s_1 , $s_1^*=s_2^*=s_1^*=s_2$

3. Results and discussion

3.1 Molar volume in the Na₂O-B₂O₃-GeO₂ system

The molar volume V of glass in the Na₂O-B₂O₃-GeO₂ system was computed from the molar volumes V_1 of the Na₂O-B₂O₃ system and V_2 the Na₂O-GeO₂ system by $V = x_1V_1 + x_2V_2$ (7), where $x_1 = s_1 + m_1$ and $x_2 = s_2 + m_2$ are the molar fractions of the sub-system 1 and 2, respectively. We need of course molar volumes V_1 and V_2 for the sub-system as a function of Na₂O content. V_1 decreases with Na₂O but meets a small bump at 50mol% Na₂O. V_2 decreases with Na₂O and has a minimum at 19mol% Na₂O. Figure 1 shows the molar volume isotherms in the Na₂O-B₂O₃-GeO₂ system. Experimental data are few in this system. In the Na₂O fixed composition series observed values have shown an excellent agreement with the theoretical ones 1 .

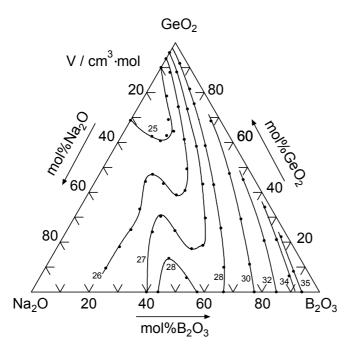
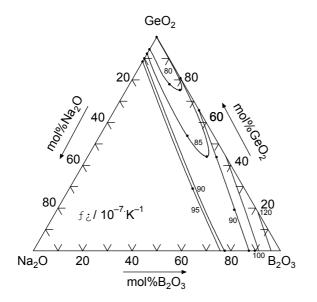


Figure 1 Volume isotherms in the Na₂O-B₂O₃-GeO₂ system in the range *V*=25-35cm³/mol.

To calculate the thermal expansion coefficient α of the system needed are Youngs' moduli E_1 and E_2 together with thermal expansion coefficients α_1 and α_2 of the subsystems 1 and 2, respectively as a function of Na₂O content. $\alpha = (x_1E_1 \ \alpha_1 + x_2E_2 \ \alpha_2)/(x_1E_1+x_2E_2)$ (8). E_1 increases with Na₂O and reaches a maximum at 33mol% Na₂O. E_2 shows a maximum at 17mol%Na₂O. On the other hand α_1 decreases with Na₂O and reaches a minimum at 17mol% Na₂O. α_2 falls until 2mol% Na₂O is attained and after that α increases steadily. Combining these data, thermal expansion isotherms of $\alpha = 80 \times 10^{-7} - 120 \times 10^{-7} \ \text{K}^{-1}$ were obtained as shown in Fig.2.



Thermal expansion isotherms in the Na₂O-B₂O₃-GeO₂ system in the range α = 80×10^{-7} - 120×10^{-7} K⁻¹

3.3 Isothermal viscosity in the Na₂O-B₂O₃-SiO₂ system²

Isothermal viscosity η of the Na₂O-B₂O₃-SiO₂ system was calculated from the isothermal viscosities η_1 and η_2 of the sub-systems Na₂O-B₂O₃ and Na₂O-SiO₂, respectively, by eq.(9). $\log \eta = x_1 \log \eta_1 + 0.967 x_1 x_2 |\log \eta_1 - \log \eta_2| + x_2 \log \eta_2$ (9), η_1 exhibits rather irregular compositional c hange with Na₂O content. At temperatures lower than 900°C it shows a maximum at around 20mol% Na₂O and at other temperatures it decreases monotonously. η_2 simply decreases with Na₂O. The isothermal viscosities at 1000°C in the range $\log \eta/Pas=0-10$ are shown in Fig.3. Strong influence of boron anomaly in the Na₂O -B₂O₃ sub-system is remained in the Na₂O-B₂O₃-SiO₂ system .

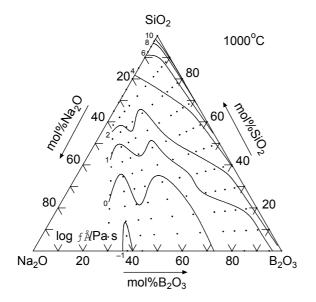


Figure 3 Isothermal viscosities of the $Na_2O-B_2O_3-SiO_2$ system at 1000°C in the range $log\eta/Pas=0-10$

3.4 Glass transition point Tg in the Na₂O-B₂O₃-GeO₂ system³

Andrade type equation (10) applies at higher viscosity region $\log \eta / \text{Pas} = 9-13$. $\log \eta = C + D/T$ (10), where T is temperature, and C and D are constants. Assuming the additive law among the characteristic constants C_1 and C_2 , D_1 and D_2 , intrinsic to the sub-system 1 and 2, respectively, C and D values are computed by $C = x_1 C_1 + x_2 C_2$ (11) and $D = x_1 D_1 + x_2 D_2$ (12). Tg, characteristic temperature of $\log \eta / \text{Pas} = 12$, was computed from eq. (10) by Tg = D/(12-C) (13). Fairly good agreement was obtained in the Na₂O fixed series.

¹ R.Ota, J.Fukunaga and T.Wakasugi, in *Borate Glasses, Crystals & Melts*, edited by A.C.Wright, S.A.Feller and A.C.Hannon, The Society Glass Technology, 1997, pp.199-206.

² R.Ota, T.Wakasugi and K.Tanaka, Abstracts of Proc. XIXICG 2001, Edinburgh, Phys. & Chem. Glasses, in press.

³ R.Ota and T.Wakasugi, Materials Science Research International, <u>6</u>, [6], 9-14(2000).