Photoluminescence spectroscopy, interferometry, XRD and TEM study of the crystallization mechanism in photosensitive glasses ^{1,2}V. Jubera, ²H. Francois-Saint-Cyr, ¹L. Petit, ¹T. Cardinal, ²V. Smirnov, ³P. LeCoustumer, ²K. Richardson, ²L. Glebova, ²O. Efimov and ²L.Glebov. ¹ICMCB, 87 Av. Dr. Schweitzer, 33608 Pessac, France ²School of Optics/CREOL, University of Central Florida, Orlando, Florida 32816, USA. ³Centre de Developpement Geosciences Appliquees, 33405 Talence, France. The heterogeneous crystallization mechanism for a specific type of photosensitive glasses has been verified step-by-step by a combined approach involving spectroscopy, X-Ray Diffraction (XRD), optical interferometry and Transmission Electron Microscopy (TEM). TEM observation of irradiated glasses led to the identification of AgF₂ and AgF₃ crystalline nanoparticles rather than Ag⁺-Ag⁺ pairs found by photoluminescence. ¹L.B. Glebov, "Photosensitive Glass for Phase Hologram Recording", Glass Science and Technology (Glastechnische Berichte), **71C**, 85-90 (1998). ²S.D. Stookey, G.H. Beall and J.E. Pierson, "Full-color Photosensitive Glass", J. Appl. Phys. **49**, 5114 (1978).