Structural properties of tellurite glasses

A. Santic¹*, A. Mogus-Milankovic¹, C. S. Ray² and D. E. Day²

¹Rudjer Boskovic Institute, Department of Physics, 10000 Zagreh, Croatia

²University of Missouri-Rolla, Graduate Center for Materials Research, Rolla, MO 65409, USA

The structure of α -TeO₂ polycrystalline material, TeO₂ glass and crystallized beads, and xNa₂O-(100-x)TeO₂ ($0 \le x \le 33.3$) glasses have been investigated by XRD and Raman spectroscopy. In the TeO₂ glass beads deformed TeO₄ tbp are connected by sharing corners similarly as in α -TeO₂ polycrystalline material. The Raman spectra exhibit that the structure of the xNa₂O-(100-x)TeO₂ ($0 \le x \le 33.3$) glasses is composed of both TeO₄ tbp and TeO₃ tp while the fraction of TeO₃ tp increases with increasing Na₂O content. The changes in the glass structure with increasing Na₂O content are a result of Te—O—Te disruption and the formation of non-bridging oxygens (NBO). The XRD and Raman spectra for the xNa₂O-(100-x)TeO₂ ($0 \le x \le 33.3$) crystallized compositions show that the composition containing 16.7, 20.0 and 25.0 mol% Na₂O crystallized to α -TeO₂ and Na₂Te₄O₉ crystalline phases. Comparing the Raman spectra of glasses and crystallized compositions containing > 20 mol% Na₂O it was shown that the local structure of glasses differs from the structure of their crystalline counterparts.