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Voronoi polyhedra (VP) tessellation offers an alternative view at glass structure, stressing the
topological and geometrical essence of glass. Although widely used for metal glass, its application in
covalently bonded glass was mostly restricted to their phase transition changes or to the comparison with
crystalline solids of similar composition. However, the presented contribution shows that VP space
tessellation is constrained by the volume-surface relation that is typical for each VP of the glass constituent.
Molecular dynamics simulation was used to obtain structures of some silicate glass, from which VP
tessellations of the space were next performed. Anisotropy coefficient of each polyhedron was calculated
and all polyhedra were statistically evaluated. A resulted frequency histogram reveals one-to-one
correspondence of each element in the glass with the histogram peak, independently on the glass
composition. However, some peaks in histogram can overlap. Therefore, two new parameters & V), coming
from the equation V'=EP'>+V, (V, P are volume and surface of VP), were suggested as a more
discriminating characteristics of elements’ VP forming the glass. To better understand the meaning of £ and
Vy coefficients, their temperature and structure dependences were studied. As expected & and ¥, tend to the
relevant VP of higher isotropy with increasing temperature or loosen structure, i.e. ¥, decreases to zero and
& reaches value corresponding to the regular polyhedron. Displaying (&, Vp) pairs for each VP in the
Cartesian system, each glass element could be uniquely described by its (&, Vj) pair. Therefore, each
substance can exist in its vitrified state only if the space tessellation made from the corresponding elements’
VP, constrained by the volume-surface relation, expressed by their uniquely determined (&, V) pair, is
possible.

Introduction

The Voronoi polyhedra (known also as Dirichlet-Voronoi polyhedra, Bernal polyhedra,
or Wigner-Seitz cells) were developed in the frame of mathematics and solid-state physics.
The Voronoi polyhedra analysis is a useful method to identify the near neighbour
environment around atoms in condensed systems"*>*. The most appealing feature of this
method, describing the geometrical structure of multi-particle systems, is the orthogonal
space tessellation in terms of Voronoi polyhedra (VP) attributed to each individual particle,
so that any point within a polyhedron is closer to the central particle than to any other
particle. This way, a definite part of a polyhedral-shaped space is unambiguously assigned to
each particle.

The first applications of VP for description of MD simulated structures were confined to the
one particle-type systems; typically to the study of MD (or Monte Carlo) simulated
amorphous metals °. The method was later extended to the MD systems containing various
types of particles. The main problem, discussed in connection with more kinds of particles,
was how the various particles radii reflect in a construction of a Voronoi polyhedron. No
simple objective method working without any adjustable parameters  was suggested until
now. However, it was shown, that the simple procedure ignoring the differences in particle
size is also applicable for systems containing various types of particles. Many quantitative
characteristics can be enumerated for each VP. Among them, the most frequently used were:
number of polygonal faces, distribution of polygonal faces with respect to the number of
vertices (i.e. triangular, tetragonal, pentagonal, etc.) and with respect to their surfaces, total



surface, volume and number of edges, and various shape parameters (e.g. non-sphericity '
tetrahedricity, octahedricity, perfectness ).

For one particle-type systems, these parameters were advantageously used for determination
of degree of ordering, the structural evolution of the system during nucleation °,
crystallization, melting * or other phase transformations. The distribution of VP with respect
to the number of various polygonal faces (triangular, tetragonal, pentagonal, etc.) was used as
a quantitative measure of the system “distance” from the particular crystalline state (e.g.
hexagonal close packing) in which the above distribution has a sharp and simple shape.
Application of various VP-parameters for structural analysis is studied in the work of
Brostow ' in detail. The direct polyhedra (i.e. the unambiguously defined polyhedra obtained
in the course of geometrical construction of VP) are used for this purpose in our previous
works '"'%. However, other mentioned VP properties were not widely used for silicate glasses
until now. To explain the situation we can realize, that contrary to the amorphous one-
particle-type systems, the structure of silicate glass consists of two parts — the covalently
bonded system of interconnected SiO, network and the modifier cations less-regularly
coordinated by oxygen with mostly ionic bonds. Simultaneously, the prevailing role of
covalent network was widely accepted. Therefore, from the topological point of view, the
structure of silicate glass substantially differs from those of amorphous metals.

The aim of this paper is to bridge the different approaches to description of covalent and
ionic species in glass, trying to suggest a common method for the geometrical description of
the mixed covalent-ionic glass. VP tessellation is a starting point of our approach, showing
the common features of VP of each species.

Method

The ensembles comprising 900 ions were simulated for the following compositions:
5%K20+95%Si02 (285 Si4”, 585 02, 30 K"), 10%K20+90%SiO2 (270 Si4*, 570 O2,
60 K, 15%K20+85%Si02 (255 Si4", 55502, 90 K"), 20%K20+80%SiO2 (240 Si4”,
540 02, 120 K), denoted as K5, K10, K15 and K20, respectively. The effective pairwise
interatomic potential of Born-Mayer type "’ was used to describe the interaction among the
ions. Parameters of the potentials were taken from Garofalini'® Ewald summation " of the
Coulomb force was performed in a cube with periodic boundaries, and leap-frog algorithm
with time step of 10-15s was used for numerical integration of Newton’s equations of
motion. MD simulation started from a random configuration at 6000 K and the system was
equilibrated for 10 000 time steps (i.e. 10-11 s). The cooling procedure comprised a step-like
decrease of the kinetic energy of all atoms followed by the numeric control of the reached
temperature (2500 time steps), and equilibration (7500 time steps). Using this procedure, the
system was cooled step-by-step from 6000 K to 4000 K, 3000 K, 2500 K, 2000 K, 1750 K,
1500 K, 1250 K, 1000 K, 750 K, 500 K, and finally to 300 K. At each temperature, the
density of the system was adjusted to reach zero pressure (<5 kbar '°). The all mentioned
glasses were also simulated by using BKS ' potentials (including the suggested parameters
for Si-O and O-O). Moreover, glasses K30: 30%K20+70%SiO2 (210 Si4", 510 O2,
180 K"), Na30: (210 Si4", 510 02, 180 Na") and Li30: (210 Si4", 510 O2, 180 Li") were
simulated by BKS type of pairwaise potentials. Parameters of the BKS potentials for Li and
K were taken from Teter ', and that for Na from Yuan and Cormack . The
thermodynamic NVT ensembles (BKS potential simulated glasses) were continuously cooled
to 300 K in 240 000 time steps of 1fs, followed by 20 000 steps of relaxation (NVE
ensembles). The data for lime-aluminium-silicate glasses 50%CaO+17%Al,0,+33%Si0,



(100 Si**, 500 O*, 100 AI’*, 150 Ca™), 25%CaO+25%AL0,+ 50%SiO, (130 Si**, 520 O*
, 130 AP", 65 Ca™), 70%CaO+10%AL0,+20%Si0, (68 Si*, 476 O, 68 A", 238 Ca™),
62.5%Ca0+12.5% ALO,+25% SiO2 (80 Si*', 480 O*, 8OAI’", 200Ca”") were taken from the
formerly presented simulated glasses *, from which those calculated for 400 K were
processed. Moreover, data obtained for the simulation of sodium disilicate melt (1300 K)*
were also processed and taken into account. Voronoi polyhedra were then constructed from
all mentioned glass (and melt) structures following the algorithm of Brostow .

Results and discussion

Montoro et al’ introduced the so-called non-sphericity, @, also referred to as anisotropy
coefficient to characterise the structure of simple disordered systems. This quantity, derived
from the scaled particle theory * is a suitable parameter for describing the shape of a general
convex body. Higher anisotropy value means lower symmetry of VP, e.g. o= 2.23, 1.50,
1.00 for regular tetrahedron, cube and sphere, respectively.
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Fig. 1: Anisotropy coefficients a) histogram b) decomposed into the anisotropy coefficients of
particular types of central atoms. Peaks correspond from left to right K, Na, Ca, O Al and Si
central atoms.

As the first step of characterization of VP in glass, the anisotropy coefficients were evaluated

for all mentioned glass and melt systems to have some idea about the distribution of & in the
glass. Results obtained for all VP were summarised into one histogram, Fig. 1a). A complex
shape of frequency function indicates the possibility of its deconvolution into more basic
components. Indeed, partial histograms for distinct central atoms revealed several peaks.
Those corresponding to network forming cations are situated at higher anisotropy values,
while peaks corresponding to modifier cation are grouped in the well-separated low-
anisotropy-coefficient region. Except for Si, all other cations reveal well-shaped nearly
symmetric peaks. Si peak is rather diffuse, with significant low-anisotropy tail. Obtained
result, that lower anisotropy corresponds to the network modifier cation, can be extended to
the comparison among distinct modifiers. We can again see that the better modifying activity
of alkaline cations (Na', K") results in a lower anisotropy compared with anisotropy of
alkaline earth cations (Ca®"). The more diffuse shape of Si peak was caused by higher amount
of penta-coordinated of SiO; polyhedra in some studied glasses. The special structural
position of O” anion excludes its categorization in terms of network forming/modifying
activity. Position of O” is close to network modifiers anisotropy region, namely to Ca’*
cation. Formally, when only valency is taken into account, the anisotropy increases with
increasing valency.

The former analysis resulting in one-to-one correspondence (independently on the glass



composition of the system) between the characteristic anisotropy value and the kind of
central atom, i.e. the type of coordination polyhedron, pointed out the significance of the
relation between the volume and the surface of VP of particular type of central atom. To
avoid unit inconsistency, and to improve one-parameter characterization of the surface-
volume relation with a more detailed two—parameters relation, we have decided to relate the
volume of the VP with its surface powered to three halves:

v=EP" 4V, (1)

The & coefficient reflects anisotropy of VP (&= 0.052, 0.068, 0.094 for tetrahedron, cube
and sphere, respectively), while 17, is a minimal volume, formally corresponding to the VP
with zero surface. The existence of the ) can be formally justified by statistics, but its
physical meaning is not quite clear. It is suggested, (I"’~17) to be an extra volume determined
by the surface of VP coming from the large versatility of shapes of VP in the non-crystalline
structure. Then, [, should decrease with both increasing temperature and decreasing cooling
rate, as the intermediate- and long-range interaction can play more important role in the
relaxation processes.

In the first step, we have restricted the analysis to four compositions of the binary
potassium-silicate glass at 300 K. The results of linear regressions obtained for Si, K and O
central atoms are presented in Fig. 2, where points corresponding to individual polyhedra in
each glass are plotted together with regression lines obtained from VP over all systems. The
correlation coefficients close to unity together with small values of standard deviation
indicate the high statistical significance in all studied cases. Similar results can be obtained for
all other temperatures. It should be stressed that linear regressions over VP in each
potassium-silicate glass yield & and 17, coefficients falling into intervals statistically
indistinguishable.
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Fig. 2: Plot of volume versus properly powered surface of Voronoi polyhedra corresponding to
the a) Si, b) O, ¢) K central atoms. The fitted line is determined by the least-square method over
VP in all glasses. Atom species are taken over K05, K10, K15 and K20 glasses.

A natural question arises about the applicability of the performed analysis of VP to the real
glasses, where the cooling rate can be about 10 orders lower. Moreover, it was shown, that
microscopic quantities (radial distribution function, angle distribution, size of rings
distribution) show a much stronger dependence on the cooling rate than macroscopic
quantities ****. Therefore, glasses with various compositions as well as with various structures
(using different potentials and different cooling) were simulated. Results of these simulations
are summed up in Fig. 3. VP of all types of central atoms clearly bear their own
individualities, i.e. VP for each type of central atom and each structure contributes with a
point in the (¥, &) plot. The point corresponding for a room temperature can be shifted
along the individual line as the structure is changed by the temperature increase. The (Vo, &)



points are shifted along the same line as the structure is changed by different composition or
by different simulation conditions.

Moreover, some basic trends may be deduced from Fig. 3 straightforwardly. Moving from a
network former to a network modifier, 17, decreases and & increases, conserving the
monotonous valency dependence. It worth mentioning, a value of oxygen anion is close to
those of the two-valent central cation (Ca™"). From the statistical point of view, slopes are
determined with much better precision than corresponding intercepts. Both oxygen and
silicon points are determined with relatively high precision in both directions. This fact
reflects high geometric constrains put on the shapes of corresponding VP.

The above well-proved relationships may be generally summarized by the following
statement. Hach type of the central atom (including oxygen) has its own characteristic zron
line, linearly relating the volume of VP to its properly powered surface. This result can be
extended into some inverse task. Let us have a given composition of silicate melt. After its
solidification to glass, the possible glass structure is restricted to tessellation of VP fulfilling
the above zron /ine conditions. When such structure cannot be constructed, the phase
separation (subliquidus unmixing or crystallization) probably takes place.

Gupta * formulated constrains for the glass forming ability based on the number of the
degrees of freedom per vertex, while Marians & Burdett " underlined the importance of
primitive 6-rings. These constrains are of topological origin, e.g. they describe the way, how
the glass network is built-up from the elemental polyhedral building units. In contrary,
constrains proposed on the bases of VP reflects mostly the geometry of the nearest
neighbours surrounding different central atoms.

Conclusions

Analysis of anisotropy coefficients of VP from central atoms in various glasses and melt
has revealed high correlation between surface and volume of VP. Linear relationship
between volume and propetly powered surface of VP has shown to be typical for each
central ion; the structural changes shift this relation only in the well-defined direction
determined by topological constraints. A hypothesis about the glass formation is formulated:
the possible glass structure is constrained to the VP tessellation fulfilling the established
volume-to-surface relation.
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Fig. 3: Plot of coefficients & and V, (Eq. 1) corresponding to VP of different central atoms in
various glasses. Error bars equals to the mean-square deviations. Si is labelled by circles (full in
K15 glass), O by squares and full thombi (in K15 glass), Al by full squares, Ca by open rthombi,

K by triangles (full for K15 glass), and Na and Li by crosses
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